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Abstract

The object kinetic Monte Carlo (OKMC) method has proven to be an excellent tool to better
understand microstructure evolution in irradiated materials, from metals to semiconductors.
Its most valuable capability is that it provides a way to connect parameters obtained from
fundamental models, such as first principles calculations, to experimental observations by
expanding  simulated  time  and  length  scales.  However,  the  OKMC  method  has  many
limitations that pose questions on its predictive capabilities and an important effort is taking
place to improve the model. In this review, first we describe the  object kinetic Monte Carlo
methodology, then a few examples are  presented in the field of radiation damage of metals
and the limitations of the method and its applicability discussed. To conclude, an outlook on
the future of this computational model is given. 
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1. Introduction

Irradiation of materials can result in defects that alter their mechanical, electrical, thermal
and/or magnetic properties. In some cases, irradiation is the means to tailor the properties,
as in  the case of  ion implantation of  semiconductors [1].  In other  cases,  defects  are an
unavoidable effect that act in detriment of material properties, as in systems exposed to high
radiation levels in nuclear reactors [2, 3]. With the advance of nanotechnology, focused ion
beams are used to fabricate nanoscale features [4] and questions still remain as to the effect
of  the  radiation  damage  produced  by  this  technique  [5].  Understanding  the  phenomena
behind defect production and defect evolution is key in all these different applications, either
to select the most appropriate material, such as in the case of nuclear applications, or to
improve the technique, as in ion implantation of semiconductors or focused ion beams. 

All  these different  applications  and experimental  conditions  have  something  in  common:
defects are produced in a time scale of picoseconds and are atomic scale in size, giving rise
to out-of-equilibrium phenomena that can evolve over much longer time and length scales
until reaching a steady-state. Therefore,  this complex system  cannot be tackled by a single
simulation model and a multiscale approach must be used [6].  The initial damage produced
by energetic particles within the picosecond time scale can be modeled using binary collision
approximation  methods  together  with  molecular  dynamics  simulations  with  empirical
potentials, as  discussed elsewhere in this special issue. The number of defects produced as
well  as  their  spatial  distribution  and  configuration  can  be  obtained  from  these
calculations.This information is crucial for the subsequent microstructure evolution, as we will
show in a few examples in this review. 

Object kinetic Monte Carlo (OKMC) is a computational method able to extend the time and
length scale of molecular dynamics simulations to times and sizes that are comparable to
experimental  observations.  For  example,  if  we  consider  that  the  dose  rate  for  ion
implantation is on the order of 5x1010 ions/cm2/s (see for example conditions in experiments
performed in Jannus [7]), and that the area in an OKMC calculation can be up to (1 micron)2,
then the average time between two ions during ion implantation should be on the order of
milliseconds.  Molecular dynamics alone cannot easily access time scales of milliseconds
since the time step is on the order of femtoseconds.,Unlike molecular dynamics simulations,
in OKMC the vibrations of each atom around its equilibrium position is not modeled, and only
the rare  events  are  followed.  However,there  is  no  unambiguous  method to  select  these
processes and it  is  to the discretion of  the modeler to decide which processes must  be
included and their probabilities known This is one of the limitations of the OKMC technique.
Once all  the probabilities of all  the possible events are known, the algorithm evolves the
system  according  to  these  probabilities  until  the  final  conditions  are  met,  either  total
simulated time or total irradiation dose. Results can be directly compared to experimental
observations  such  as  transmission  electron  microscopy  (TEM),  positron  annihilation
experiments (PAS), small angle neutron scattering (SANS) or atom probe tomography (APT).
These  experimental  methods  provide  information  about  defect  concentration  with  dose,
defect  sizes  and  character.  Contrasting  the  results  of  the  calculations  with  different
experimental observations is necessary to verify the reliability of the model considered.

In the following we will describe the OKMC algorithm, and briefly two related Monte Carlo
methods, the so-called event kinetic Monte Carlo and the first-passage kinetic Monte Carlo.
Several examples are presented, focused on the influence of the initial damage distribution
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obtained from molecular dynamics with empirical potentials on microstructure evolution in the
case of irradiated metals.

2. Methodology

The  main  algorithm  of  all  Monte  Carlo  methods  is  based  on  a  stochastic  component.
Consequently, there is a wide variety of algorithms under the name Monte Carlo and used for
very different applications from materials modelling to risk assessment in finance [8]. The first
Monte Carlo method is attributed to Ulam and Metropolis, developed while working at the Los
Alamos National Laboratory during the Manhattan project [9]. See references [10, 11] for the
history of this development. In the field of defects, the first simulations were done a few years
later by Beeler [12], followed by those of Besco [13] and Doran [14] applied to study short-
term annealing of defects in f.c.c. and b.c.c. materials. 

The Monte Carlo method that will be discussed here follows the kinetics of a series of
events with known probabilities of occurrence, hence its name kinetic Monte Carlo (KMC). It
was first used in the field of radiation damage by H. Heinisch in the early 90's [15] and since
then  it  has  been  applied  to  different  metals,  particularly  iron,  iron  alloys  [16,  -20]  and
tungsten [21,  22],  to  name a few.  In  the case of  radiation  effects  events  are  related to
migration of defects, dissociation of defect clusters or interaction between different types of
defects among themselves or with the existing microstructure. These are slow processes or
rare events that cannot be followed with atomistic methods like molecular dynamics, where
time scales  are typically tens of nanoseconds, as mentioned above. In KMC, once all the
different types events and event rates are known, the system evolves according to those
rates, and different algorithms can be used for evolving the time. Object kinetic Monte Carlo
(OKMC) models use the  Bortz-Kalos-Liebowitz (BKL) algorithm (also called residence time
algorithm) to evolve time [23].  In the OKMC the total rate for all possible events is calculated
as: 

   (1)

where e is the total number of possible events,   is the probability of occurrence of a
particular event i and N is the total number of objects that can undergo event i. Once the total
rate R is calculated, a random number selected between 0 and R will determine which event
will occur. In this manner, the event is selected randomly but with the appropriate weight
according to its probability of occurrence. Once the event is picked, the simulation time is
updated, increasing the time by a time increment,  t, that is  inversely proportional to the
total rate:

  (2)

Often, the time increment is multiplied by the logarithm of a random number, ξ, between
0 and 1, to ensure that a Poisson distribution of time is achieved. 

After selecting the event, an object that can realize the event is picked randomly. Actions
associated to the event are then computed and the system is updated accordingly. Note that
all different processes must be independent from each other, that is, the rates only depend



on the state of the system and not on the previous events. For example, in the case we are
interested in, radiation damage, an event could be the migration of a self-interstitial atom.
The event in this case is the migration and the object the self-interstitial. One self-interstitial
is  then selected randomly from all  those existing in  the system and displaced to a new
location. In the case of an off-lattice kinetic Monte Carlo, the displacement is a fixed distance,
usually taken between first and second nearest neighbours distance. Once the self-interstitial
has  been  displaced,   the algorithm  evaluates  the  new  environment  of  that  object  and
performs  the  necessary  actions.  For  example,  if  the  self-interstitial  is  located  within  the
capture radius of another defect, the interaction and reaction between both objects must take
place,  therefore changing the defect  distribution and configuration.  One possibility  in  this
example is that the self-interstitial moves to a location within the capture radius of a vacancy
and consequently these two defects cancel each other. The self-interstitial could also move
within the capture radius of another self-interstitial and a di-interstitial would  be created.
Much of the simulation time is, in fact, spent in the latter part of the calculation. This also
implies that  at  every time step,  the total  rate must  be recalculated since the number  of
objects for each event could, in principle, have changed. Figure 1 shows schematically the
different steps in a general object kinetic Monte Carlo calculation.

The aforementioned algorithm is, however, not the only possible method for selecting
events in a kinetic Monte Carlo model. A different approach is used in the so-called Event
kinetic Monte Carlo [24, 25] and first-passage kinetic Monte Carlo (FPKMC) [26]. Here, the
time associated  to   every  possible  event  (time  delay)   is  first  calculated  and  the  event
selected is that with the shortest time delay. The selected event is then performed, taking
care of all the associated changes, as explained above, and all the new time delays have to
be calculated. The time in this case advances by the delay time of the event picked. This
algorithm is used in codes such as JERK  [25, 27] and has been used very successfully to
compute  the  electrical  resistivity  of  irradiated  iron  (Fe)  [16]  and  Fe  in  the  presence  of
impurities such as carbon [28]. In the EKMC method some approximations are made in order
to calculate the delay time for  events such as the interaction between two neighbouring
objects. For more details on EKMC see references [25, 27-29].

A more  general  method  has  been  developed  by  Opplestrup  et  al  [26]  named  first-
passage kinetic Monte Carlo (FPKMC). In this method, as in the EKMC algorithm, the event
selected is the one that would occur in the shortest time from all possible events.  However,
FPKMC lacks the approximations included in EKMC. In FPKMC, each  object is surrounded
by a “protective domain”, that is a volume where no other objects can be found. When an
object  is selected it  is  moved to the edge of  that  domain.  This approach gives rise to a
tremendous computational gain with respect to OKMC since many small jumps, that would
have to be done in OKMC where the jump distance is fixed, are automatically avoided in
FPKMC. However, the efficiency of FPKMC decreases significantly with respect to OKMC
with increasing number of particles , since for each step, the time delays associated to all
objects have to be calculated. Some applications and comparisons between FPKMC and
OKMC can be found in [30]. 

The key parameters in KMC (either OKMC, EKMC or FPKMC) are the probabilities of
the events in  our  system. Transition state theory (TST)  can be used to obtain the rates
between two different states [31].  For an extended description of TST and KMC see the
review by A.  Voter  [32].  The transition rates are generally  obtained from energy barriers
between two different states of the system. Models such as density functional theory (DFT)
or others less accurate, like calculations using empirical potentials, can be used to obtain
these barriers. Details of these calculations can be found   in other articles  of this special
issue.  
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Once  the  activation  energy  is  known,  the  rate  for  the  event,  ,   can  be  obtained
assuming an Arrhenius dependence, if the harmonic approximation is used within transition
state theory (see review by Voter for further details [32]):

(3)

where  0 is  the jump or attempt frequency, Ea is  the activation energy for that particular
event,  K is Boltzmann's constant  and T is the temperature.  The accuracy of the method
depends on the accuracy of the values of the different rates and on the selected events and
interactions to describe the system.  How well  this  model  reproduces the system we are
interested  in  can  only  be  assessed  through  extensive  comparisons  with  experimental
observations.

Table  I  gives  a  list  of  all  parameters  required  for  a  standard  calculation  of  defect
evolution in  a material  under irradiation,  and the possible sources for  these parameters.
Objects in this case are defects produced by the ion, electron or neutron irradiation. Events
include all interactions between these defects and with the existing microstructure such as
dislocations or grain boundaries. The starting point of the simulation is the distribution of
defects produced by irradiation, including location (x, y, z coordinates) and type (vacancy,
self-interstitial, impurity).  In the case of continuous irradiation, defects are created following
the rate of  the experiment that is being simulated. As mentioned in the introduction, positions
and type of  defects can be obtained from classical  molecular  dynamics simulations with
empirical potentials (CMD), from binary collision approximation (BCA) calculations, such as
those obtained from SRIM [33] or Marlow [34], or as a random distribution of Frenkel-pairs,
depending  on  the  type  of  experiment  to  be  modelled.  For  example,  when  damage  is
produced by electrons the latter approximation can be used. In the case of damage produced
by  light  ions  such  as  He,  calculations  using  the  binary  collision  approximation  are
appropriate.  However,  for  self-irradiation  and  heavy-ions  data  from  molecular  dynamics
simulations should be used. Often a combination of BCA and MD calculations is used to
obtain the distribution of defects during irradiation for energies that cannot be reached by
CMD alone. BCA is used to obtain the energies of recoils produced by the energetic particle
along its path, but the final defect distribution produced  is obtained from CMD simulations.

In some of the implementations of the OKMC algorithm, clusters are described by the
location of its centre of mass, the number of defects and the type of defects in the cluster
[15-22]. Codes such as Bigmac [35] or Lakimoca [19] use this approach. Each defect, either
a single defect or a cluster, has associated a capture radius that depends on the number of
defects of that object. This capture radius, r, is often defined as spherical: 

(4)

where n is the number of defects in the cluster and  is the atomic volume. This capture
radius is used to define when two defects interact.  Also when a defect  dissolves from a
cluster it  is  positioned outside this capture radius.  When using this approach information
regarding the lattice structure is  lost.  Strain effects such as the bias interaction between
interstitials  and dislocations  can be included in  the capture radius.  It  is  also  possible to
include strain effects in OKMC using elasticity theory [36, 37].  



In other implementations of the OKMC, the location of all the defects in a cluster are
kept in the simulation. This is done in codes such as MMonCa [38] which has been used to
model  dopant  diffusion  in  silicon  [39]  as  well  as  metals  [40-42].  This  approach has  the
advantage that the capture volume is defined by the location of the defects in the cluster so
complex geometries can be taken into account, beyond spherical volumes.  . However, it is
also computationally more expensive. 

As  mentioned  above,  in  an  OKMC simulation  of  radiation  damage,  the  objects  are
defects produced during the irradiation, that is vacancies (V) and self-interstitials (I), but also
impurities that could exist in the sample, such as carbon (C), or produced by transmutation in
neutron irradiation or implanted, such as helium (He). Clusters that these defects can form
among themselves must also be considered. In a system with 4 different types of objects (V,
I, C and He, for example) the possible permutations between these different elements can
give rise to a wide variety of complexes. The migration energy, dissociation of a defect from a
cluster and the interaction between the different types of defects must be known for all these
elements. For example the probability of a defect of type t  undergoing a migration event is
given by:

(5)

where, as mentioned above, t
0 is the jump frequency, Et

m is the migration energy for that
particular  type of  defect,  K is Boltzmann's constant  and T is the temperature.  When the
object can migrate in any direction (three-dimensional migration) the jump is often performed
by randomly placing the object  within  a sphere of  radius the jump distance.   When the
migration of the object is restricted to one particular direction (one-dimensional migration),
such as the case of some self-interstitial clusters in metals, a particular direction of motion
with respect to the simulation volume is given to the object when it is created, and the jumps
are performed only  along that  direction,  for  example,  <111> for  Fe or <110> for  copper
(Cu). .

Another basic type of event is the dissociation of a defect from a cluster. In this case,
considering a diffusion-limited reaction, the probability of that defect dissociating from the
cluster is given by: 

   (6)

where Et
b is the binding energy of the defect to the cluster. This energy depends on the

number of defects in the cluster and the type of cluster. 

Finally, all the possible interactions between defects must be taken into account. Here,
the system can be made as simple or as complex as required by the particular objective of
the simulation at hand. The simplest case could be considering only vacancies and self-
interstitials  and  only  one  type  of  self-interstitial  cluster.  Then  three  reactions  must  be
considered: In + Im → In+m  (self-interstitial cluster growth, where n and m are the number of
defects on each cluster), Vn + Vm → Vn+m (vacancy cluster growth) and In+Vm which could
result in three different outcomes: annihilation of defects if n=m, a self-interstitial cluster of
size n-m, In-m, if n > m, or a vacancy cluster of size m-n, Vm-n, if m>n. Nowadays, however,
calculations of defect evolution in metals are much more complex, including the presence of
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impurities, such as C [41] or He [20, 43], different types of self-interstitial clusters [42] or even
alloys [44]. Therefore, the list of possible reactions between defects can be very extensive. In
such complex calculations one of the difficulties is to identify the relevant parameters that are
the main drivers for microstructure evolution.    

In  the  following  sections  we  will  describe  some examples  of  OKMC calculations  of
microstructure  evolution  in  irradiated  metals  under  different  conditions.  These  examples
focus on the influence of the initial damage distribution, obtained from molecular dynamics
simulations, on the microstructure that can be observed by techniques such as transmission
electron microscopy.

3. Damage accumulation in pure metals: copper vs. iron

The first application of the OKMC method refers to damage evolution in two metals: Cu, with
an f.c.c.  structure,  and Fe with a b.c.c.  lattice,  described in  detail  in  reference [17]  The
influence of  the initial  damage distribution in  microstructure evolution is  clearly  observed
when comparing damage accumulation in these two metals. Molecular dynamics simulations
of recoils with the same energy in these two materials show that, although the total number
of  defects  produced is  very similar,  the defect  distribution  is  different.  Figure  2 shows a
representative example for 30 keV cascades. Green spheres represent the location of vacant
sites and red ones are self-interstitials. These cascades were calculated in this work using
embedded atom type of potentials, [45] and [46] for copper and iron respectively.  In copper
almost  every single  cascade will  produce a  vacancy cluster  at  the  initial  location  of  the
primary  recoil  surrounded  by  self-interstitial  clusters,  normally  of  smaller  size  than  the
vacancy one as  shown in  figure  2(a).  These vacancy clusters evolve  into  stacking fault
tetrahedra (SFT) over longer periods of  time,  as shown by other authors [47]  and under
certain conditions these SFTs can be formed directly in the cascades [48].  The size of these
vacancy clusters is of the order of 1.5 nm in radius. In iron, the damage produced for the
same recoil energy consists mostly of isolated vacancies, also located near the center of the
collision  cascade,  surrounded  by  self-interstitial  clusters,  as  shown  in  figure  2(b).  Self-
interstitial clusters are usually smaller in the case of Fe than in Cu. 

Using  a  database  of  defect  distribution  from molecular  dynamics  simulations  of  collision
cascades , Caturla et al. [17] modeled damage accumulation and microstructure evolution
with OKMC. In this case 20 keV cascades were used. The calculations were performed for
the same homologous temperature, 0.25 of the melting point (340 K and 363 K for Cu and Fe
respectively) using the OKMC code BIGMAC, developed at LLNL [35]. 

The  migration  and  binding  energies  for  Cu  vacancies  were  taken  from  calculations  by
Sabochick et al. [49, 50] while for self-interstitials the values of Schober and Zeller were used
[51] obtained with empirical potentials. For iron values for vacancies and self-intersitials were
calculated by Diaz de la Rubia and Soneda and used in these calculations [52]. Note that at
the time, the state-of-the-art interatomic potentials for Fe predicted the <111> self-interstitial
as the most stable configuration, with almost athermal migration (Em ~ 0.1 eV) just like in the
case  of  copper.  Since  then,  DFT  calculations  have  revealed  that  the  most  stable
configuration  for  the  self-interstitial  in  Fe is  the  <110> dumbbell  with  a  higher  migration
barrier  (Em ~ 0.3 eV [51]).  Fu et.  al  [16]  interpreted the experimental  measurements of
resistivity recovery of electron irradiated Fe through a combination of DFT and KMC, in this
case EKMC. Simulations showed that  a <110> dumbbell is the most stable configuration.
Nevertheless, as an example of OKMC calculations and for the sake of comparison between



these two materials, particularly regarding the effect of initial defect distribution, the results
first published in 2000 are still valid [17]. These results and the assumptions in the model are
described briefly in the following paragraphs.

In  the  case  of  copper,  self-interstitial  clusters  of  sizes  smaller  than  60  defects  were
considered mobile. If they traveled a distance equivalent to 1 micron, they were removed
from the simulation box, considering an effective grain size of 1 micron. In Fe, self-interstitial
clusters were  also considered mobile but when  within the capture radius of each other they
formed a junction and became immobile. 

Damage accumulation at a dose rate of 10-4 dpa/s for both metals was calculated. In iron, 5
atomic parts per million (appm) of interstitial impurity atoms were included in the simulation,
which act as perfect traps for self-interstitial atoms and small self-interstitial clusters.

Figure 3(a) shows the total cluster concentration as a function of irradiation dose for the two
metals, copper (in red) and iron (in blue). Note that the total concentration is very similar for
both metals. However, the cluster concentration measured experimentally with TEM  is at
least one order of magnitude lower in irradiated iron than in copper [54]. A more detailed
analysis  shows that  in  copper  most  self-interstitials  and self-interstitial  clusters disappear
through recombination with vacancies or at grain boundaries, and most of the damage is
formed by vacancy clusters. This is significantly different in the case of iron where both self-
interstitial and vacancy clusters are present. However, the size of these clusters are very
different  between  the  two  materials.Copper  vacancy  clusters  with  up  to  30  defects  are
observed, as a consequence of the clustering occurring in the collision cascade, while in iron
the largest vacancy clusters have less than 15 defects. Self-interstitial clusters in iron are
larger with sizes with up to 60 defects in a cluster. 

The comparison with  TEM measured defect  densities  can only  be done considering the
threshold for visibility in these experiments. Using a threshold of 20 defects for vacancies in
copper, equivalent to a stacking-fault tetrahedra of ~1.5 nm, 350 vacancies for a 1 nm void in
Fe and 50 self-interstitials for a 1 nm loop in Fe, we obtained the results of the visible cluster
concentration as a function of dose in copper and iron shown in figure 3 (b). Here, the one
order of magnitude difference between copper and iron observed experimentally is clearly
revealed.  

The results for copper obtained from the OKMC model described here are well understood .
The  cluster  concentration  matched  remarkably  well  the  experimental  measurements  as
shown in [17].  Besides the cluster  concentration,  the average number of  vacancies in  a
cluster (~28) is also in agreement with the experimental results, (~2 nm). These simulations
showed that  SFTs in copper are formed directly in the collision cascade, which explains that
the  average  size  of  defects  is  constant  with  dose.  Therefore,  for  copper,  the  two  most
relevant parameters that explain the experimental observations are (1) formation of vacancy
clusters within the few picoseconds time frame of the collision cascade (2) fast migration of
self-interstitial clusters. For the case of iron, however, the correlation between simulations
and  experiments  is  not  so  straightforward.  The  lack  of  significant  clustering  within  the
collision cascade implies that most of the evolution of the clusters and growth to sizes that
can  be  observed  experimentally  is  going  to  occur  through  defect  diffusion  and  defect
coalescence. It also implies that impurities play an important role in defect accumulation and
growth in  Fe.  The interaction  between self-interstitials  and vacancies  with  impurities can
modify  the  density  and  size  of  defects  accumulated  in  Fe.  The  description  of  these
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interactions depends completely on the set of reactions that the user of the OKMC model has
decided to consider as the important ones. That is, there is not an unambiguous description
of defect evolution in Fe which is,  in fact,  the reason for much of the controversy in the
modeling of microstructure evolution of this material. This discussion, however, is beyond the
scope of this review paper.

4. Void swelling in f.c.c. and b.c.c. materials

The influence of initial damage structure on void swelling was also studied with an OKMC
model [43,  55].  Void swelling is  a phenomena observed mostly  in  austenitic steels while
ferritic steels seem to be more resistant to it [56]. This effect is due to the stabilization of
vacancy clusters by the presence of impurities, mostly helium, and the fast migration of self-
interstitials to sinks [57]. In this case it is necessary to include in the OKMC model all the
reactions between vacancies and self-interstitials with helium.  The values for the binding
energies of defects to clusters of type HenVm, where n is the number of helium atoms in the
cluster and m is the number of vacant sites, must be obtained.. The usual procedure in this
case is to compute the binding energies of a few representative but small clusters using DFT
and then use an interatomic potential that has been validated with these results, to obtain the
values for larger clusters. In the example presented here, the OKMC model [43, 55] included
the values of biding energies of HenVm clusters calculated by Adams and Wolfer [58] using
empirical  potentials.In  the  calculations  the binding energies   were kept  the  same for  all
simulations and only the source term, that is, the initial distribution of defects, was changed.
Defect distributions from iron and copper cascades, similar to the example in the previous
section, were used.

Calculations were performed for the same total dose (0.1 dpa) and for different temperatures.
For each cascade a Helium atom was introduced in the simulation, or a total of 1000 appm of
He per  dpa.  The number  of  vacancies in  clusters containing He were counted as those
contributing  to  swelling.  The  equivalent  of  a  percent  of  swelling  was  obtained  from the
vacancies in clusters with He and a relaxation volume of 0.8 of one atomic volume (. This
relaxation volume takes into account  the migration of  a self-interstitial  to  a sink and the
change in volume in a void,  as obtained from molecular dynamics.  Figure 4 shows the
results obtained for the percent of swelling as a function of temperature for the same total
dose and for two different initial configurations of the cascade damage. We observed that
when clusters are present in the collision cascade, a swelling dependence with temperature
very similar to that measured experimentally for f.c.c. materials [56], with a clear swelling
peak.  Note  that  not  only  vacancy  clustering  is  necessary  to  produce  swelling.  Vacancy
clustering  is  needed as the seed to nucleate  HenVm clusters,  however,  in  order  to  have
swelling an efficient removal of self-interstitials is required. In this case self-interstitials cluster
during  the  collision  cascade  and   can  migrate  to  sinks  such  as  dislocations  or  grain
boundaries. These are, in fact, the main components of the ‘production bias’ model described
by Woo and Sing [57]  which is based on the early results of molecular dynamics simulations
of collision cascades in metals. 

In the case of cascade damage with small self-interstitial clusters and dispersed, isolated
vacancies,  calculations  showed  that  swelling  is  very  small  (blue  line  in  figure  4)  in
comparison  with  the  case  described  above  where  defects  were  mainly  clustered.  This
comparison was done for the same total dose measured in dpa (displacements per atom),
that is, for the same number of defects produced in the irradiation. The green curve in this
case includes not only the vacancies in HenVm but also those in vacancy clusters without He,



although  no  significant  differences  are  observed.  Swelling  only  increased  slightly  with
temperature in this case, reproducing results observed in b.c.c. materials such as iron [54].
The reason for this difference was that in Fe vacancies must first migrate and form clusters
that serve as the nuclei for HenVm bubbles or voids. Many of these vacancies recombined
with the nearby self-interstitial clusters, which although may migrate, are smaller than in the
case of  copper,  therefore more disperse increasing the probability  of  recombination  with
vacancies.  Vacancies  can  also  diffuse  to  other  sinks  such  as  grain  boundaries  or
dislocations.  In  brief,  higher  recombination  between  vacancies  and  self-interstitials  in  a
disperse collision cascade resulted in lower densities of nuclei for bubbles and voids and
consequently lower swelling. As mentioned above, these results can only be qualitatively
compared to experiments mainly due to the low doses reached in the calculations compared
to existing measurements, as well  as the lack of  accurate enough parameters for  HenVm

clusters. Despite limitations, these simulations showed that some of the features observed in
the microstructure evolution of irradiated materials are directly related to defect distributions
produced in the core of a collision cascade. This link between the picosecond time frame of
molecular dynamics simulations and experimental observations can be performed through
the use of an OKMC model, including the three dimensional distribution of defects.

5.  Influence of  the  interatomic  potential  on  collision  cascades and  microstructure
evolution: the case of Fe

The two cases described above involved a comparison between materials where the defect
damage distribution originated in the collision cascade is quite different in terms of clustering
of vacancies and self-interstitials. The influence of the interatomic potential  on the collision
cascade modeled by molecular dynamics and on the later evolution of the damage may be
questioned. However, results obtained from molecular dynamics on defect distribution in the
picosecond time frame cannot be directly validated experimentally. Only, as explained above,
the evolution of this damage  calculated with OKMC or rate theory models can be compared
to experiments.  However,  many other factors are present  in  these simulations:  migration
energies,  binding  energies,  reactions  between  defects  or  defect  capture  radius  among
others.  Further,  it  is  known  that  for  the  same  material,  recoil  energy  and  temperature,
different interatomic potentials will result in different clustering fractions of defects [59, 60],
even though the total number of Frenkel pairs produced will be very similar. This raises the
question  of  how these differences will  affect  the  long term damage evolution.  Are those
differences significant enough to give rise to a difference on the long term evolution of the
microstructure?  In  order  to  answer  this  question,  Björkas  et  al  [61]performed  OKMC
calculations  where  all  parameters  regarding  migration  energies,  binding  energies,  defect
interactions  and capture radius  were kept  the  same and  only  the  database of  collision
cascades was changed, calculated for Fe with three different interatomic potentials and for
the same energy (50 keV) and recoil  conditions [61].  The following interatomic potentials
were used for the cascades: the one developed by Ackland, Mendelev and Srolovitz (AMS)
[62], the one from Dudarev and Derlet with short range potential fit by Björkas and Nordlund
(DD-BN) [63] and one developed by Müller, Erhart, and Albe with short range part by Björkas
and Nordlund (MEA-BN) [64]. All three potentials produced, on average, very similar number
of Frenkel-pairs. However, the AMS potential gave rise to large self-interstitial clusters (more
than 100 defects) that did not appear in the other two potentials within the statistics of these
calculations (at least 10 cascades for each energy and potential). For more details see ref.
[61]. Although the number of large self-interstitial clusters was small, it is interesting to see
how the presence of these clusters affects the subsequent damage evolution.
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Figure 5(a) shows the total number of clusters as a function of dose obtained for all three
potentials and the same conditions of irradiation (dose rate, temperature, concentration of
traps, etc.).  No significant difference between the calculations was obtained in this case.
However,  when only  visible  clusters  are  considered,  that  is,  clusters  with  more than 55
defects  (  ~  1  nm loop),  then the  difference in  damage accumulation  between  the three
potentials was clearly observed, as shown in figure 5(b). The potential with the largest self-
interstitial  clusters formed in the collision cascade (AMS) had a smaller  slope for  defect
growth with dose but visible clusters appeared at a lower dose than in the case of the other
two potentials with a steeper slope.

These results  showed,  firstly,  the  importance of  the  initial  defect  distribution  on damage
evolution.  Even  if  the  probability  of  having  large  self-interstitial  clusters  is  small,  their
presence determines how the damage grows under subsequent cascades and over long
periods  of  time.  These  results  also  provided  a  possible  path  for  validating  interatomic
potentials  in  terms  of  cluster  size  distribution  obtained  in  the  collision  cascade.
Experimentally, the slopes that are measured for cluster concentration as a function of dose
depend on the type of ion irradiation. In Fe, heavy ions give rise to a slope close to 1, since
large self-interstitial clusters are formed in the collision cascade and easily grow to visible
sizes.I Irradiation with Fe ions results in higher slopes, ~2, meaning self-interstitial clusters
formed in the collision cascade are below the TEM visibility limit  and coalescence between
clusters as well as cluster growth due to diffusion of small self-interstitial clusters or mono-
interstitials is required to reach visible sizes. Slopes as large as 4 have not been observed
experimentally.  This  means  that  some type  of  clustering  must  occur  within  the  collision
cascade and that the MEA interatomic potential is not able to capture this behavior. 

It is important to point out that the validation of the interatomic potential in this manner is
neither  straight  forward nor  complete.  As  mentioned  earlier,  many  other  parameters  are
involved  when  looking  at  microstructure  evolution:  migration  energies,  binding  energies,
interaction radius. The effect of these parameters was not studied in this work. Migration,
binding energies and defect interactions are particularly important in the case of Fe where
clustering in the collision cascade is generally small compared to other materials like W (see
ref. [65]) or Cu (see figure 2(a)). Therefore, in Fe coalescence of self-interstitial clusters and
growth  beyond  the  collision  cascade  phase  is  needed  to  reach  those  sizes  observed
experimentally. And these processes are governed by reactions between loops and defects
mobilities selected in the OKMC model. This approach could, in fact, be more successful in
other  materials  where  clustering  in  the  collision  cascade  is  larger,  and  the  subsequent
interaction among defects in the cascade does not play such as significant role as in Fe, like
in the case of copper mentioned in section 3 above, or tungsten for b.c.c. materials.

6. Beyond the standard OKMC models

Currently there is a wide interest on enhancing the capabilities and accuracy of kinetic
Monte Carlo models. There is a considerable effort devoted to improve the efficiency of this
method  so  that  longer  times  and  larger  system sizes  can  be  modelled.   A comparison
between different codes and approaches can be found in references [29 & 30]. Nowadays,
with the existence of supercomputers, parallelization would seem an obvious way to improve
performance of these calculations. Parallelization is relatively simple in an EKMC or FPKMC
algorithm. However, in the OKMC algorithm the total rate for all events in the system must be
computed at each time step. This means that all nodes must know of all events at every time
step. Recently, Martinez et al. [66] have developed a synchronous parallel algorithm which,



unlike previous attempts, solves the same master equation as the serial algorithm. In this
case,  the  total  rate  of  all  events  on  each  processor  is  kept  fixed  for  all  processors  by
including null events. A different approach has been developed by Jimenez and  Ortiz  [67]
making use of GPUs for the parallelization of the OKMC algorithm.  

Another aspect in the improvement of the OKMC method is trying to find a way to avoid
the  arbitrary  selection  of  the  events  that  go  into  the  calculation.  One  of  the  great
advancements in this area is what is known as on-the-fly kinetic Monte Carlo where the
events are not pre-selected. The basic idea of this method is to compute the rates of the
specific processes at the same time as the kinetic algorithm is evolving. That is,  rates are
not tabulated before the KMC calculation starts. This is particularly important for systems
where the different type of events are very large and it is not possible, a priori, to know or
define every scenario. This is, for example, the case of defect diffusion in alloys, in particular,
in  concentrated  alloys,  where  the  rate  of  a  particular  reaction  will  depend  on  the  local
environment.  The  methodologies  used  to  implement  an  on-the-fly  KMC  algorithm  differ
between different groups and is adapted to the type of problem that needs to be solved.
Probably the first on-the-fly KMC model is the one by Henkelman and Jónsson [68]. The
authors use the dimer method [69] to obtain the saddle points between different states and
construct an event catalogue.  Stress-assisted diffusion of hydrogen in iron has been studied
[70] combining on-the-fly calculations of barriers using empirical potentials and barriers pre-
calculated by the more accurate density functional theory. . For other examples of on-the-fly
KMC see references [71-74]. Xu et al [75] developed a promising on-the-fly method called
self-evolving atomistic kinetic Monte Carlo (SEAKMC). In this case, longer simulation times
can be achieved by defining “active volumes” around the defect of interest [76, 77]. Active
volumes were also used in the work of Henkelman and Jónsson [68]. For further information
about these methods see the article devoted to SEAKMC in this special issue. For the case
of  defect evolution in alloys other specific methods have been developed to produce the
catalogue of transition rates in a more efficient way. One of those methods consists of using
artificial neural networks to predict the values of the energy barriers [78]. Another method
makes  use  of  the  phase  diagram  to  bias  defect  diffusion  and  considers  the  local
concentration to calculate the defect rates [79]. 

There are still challenges in the field of object kinetic Monte Carlo. Avoiding the ad hoc
selection of the processes to include in the calculations still remains an open question. And
probably one of the missing important components is taking into account in a general form
the elastic field interactions between defects, although some important advances are being
achieved as in the work of Mason et. al [80].    

7. Conclusions

In this review, after introducing the methodology behind object kinetic Monte Carlo, we have
shown  how  this  algorithm  can  be  used  to  study  microstructure  evolution  of  irradiated
materials.  The  OKMC  method  provides  a  connection  between  atomistic  simulations  of
migration energies, binding energies or defect distributions with experimentally meaningful
time and length scales, preserving the three dimensional distribution of defects.  Therefore,
they  provide  a  way  of  validating  these  parameters  or  evaluating  their  influence  on
microstructure  evolution.  In  this  respect,  we  have  shown  three  examples  of  how  the
picosecond  time  defect  distribution,  obtained  from  molecular  dynamics  simulations  of
collision cascades, has an important impact on the microstructure evolution.
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However, care must be taken when drawing conclusions from OKMC calculations as those
described here. In all these simulations there is always a selection from the part of the user
of the reactions and mechanisms included in the calculations. A model will only be robust if,
with  the  same  input  parameters  regarding  defect  migration,  binding  energies  and
interactions, is able to reproduce different experimental conditions. Further improvements of
the OKMC algorithm to avoid this ad hoc selection of reactions are ongoing with the work of
researchers at Oak Ridge National Laboratory in the US [75-77]  or at Culham Center for
Fusion Energy in  Europe  [80],  among others.  These models,  however,  are much more
costly. If a connection to experiments at high doses (several dpa) has to be established, then
it is necessary to make use of the OKMC approach described here with selected reactions.
These advanced tools can help in the selection of the proper parameters and interactions.
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Tables:

Table I: Description of required input parameters for a standard calculation of defect evolution
in an irradiated material and possible methods and sources to obtain this input.

Input parameters required Possible sources/methods

Initial defect distribution CMD, BCA, random distribution

Capture radius CMD, DFT, Elasticity theory

Migration energies CMD, DFT

Dissociation energies CMD, DFT, Elasticity theory

Defect-defect interactions CMD, DFT, Elasticity theory
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Figure captions:

Figure 1: Schematic representation of an object kinetic Monte Carlo algorithm. 

Figure 2: Representative cascade damage produced by a single 30 keV recoil atom in (a)
copper and (b) iron. Green spheres represent the location of the vacant sites while red ones
are the location of self-interstitials.

Figure 3: (a) Total cluster concentration as a function of dose for copper and iron (b) visible
cluster concentration.

Figure 4: Void swelling as calculated from the OKMC model as a function of temperature for
two different initial damage distributions, one with clusters as in an f.c.c. material such as
copper (red line) and one with mostly small clusters or isolated monovacancies and mono-
interstitials, like in the case of iron (blue and green curves). In the green curve, both the
vacancies  in  clusters containing He and those without  are counted to obtained the void
swelling. Total dose 0.1 dpa and 1000 appm He concentration.

Figure 5: Cluster concentration in irradiated iron as a function of dose for calculations with
initial configurations of defects obtained with three different interatomic potentials (a) Total
cluster concentration (b) Visible cluster concentration.
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